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Abstract

Baffles are generally used as damping devices in liquid storage tanks. The focus of the present paper is to
study the influence of a baffle on the dynamic response of a partially liquid-filled cylindrical tank. A baffle is
assumed here to have the shape of a thin annular circular plate. The natural frequencies of an inviscid and
incompressible liquid are determined for varying positions and dimensions of a baffle attached normal to
the tank wall. The flexibility of both the baffle and the tank are considered in studying the effects of liquid–
baffle and liquid–tank interactions on the sloshing mode frequencies. Finite element codes are developed
and are then used to analyze both the liquid domain and the structural domain (i.e., the tank and the
baffle). The coupled vibration frequencies of the tank–baffle system are computed considering the effect of
sloshing of liquid. The results obtained for a liquid-filled elastic tank without a baffle and a rigid tank with a
rigid baffle are in good agreement with the available results. The slosh amplitude of liquid in a rigid tank
with and without a rigid baffle is studied under translational base excitation. The effects of the tank wall
and baffle flexibility on the slosh response are also investigated.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Sloshing is the motion of liquid in a container with a free surface. The coupled interaction
between the sloshing liquid and the structure has been the challenging field of research in many
engineering applications such as liquid storage tanks, fuel tanks of space vehicles, dam–reservoir
systems and several others.
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Housner [1] presented the simplified formulae to compute the dynamic pressures developed on
accelerated liquid containers. Housner [2] studied the dynamic behaviour of ground-supported
elevated water tanks considering equivalent spring–mass systems. The dynamic behaviour of
liquid in moving containers was presented by Abramson [3] in the form of a monograph NASA
SP-106. Zienkiewicz and Bettess [4] addressed Lagrangian and Eulerian approaches for the
solution of coupled structure and fluid systems. Haroun and Housner [5] used analytical and finite
element models for liquid and tank, respectively, for the dynamic analysis of ground-supported
cylindrical tanks. Aslam [6] developed a finite element formulation based on a linearized wave
theory to predict the slosh displacements and hydrodynamic pressure in an axisymmetric rigid
tank due to an arbitrary ground acceleration. Aslam et al. [7] studied the sloshing response of
liquid in annular and cylindrical tanks both analytically and experimentally. Li et al. [8] analyzed
the liquid sloshing response in a pool due to three-directional earthquake ground motions. The
coupling effect between the sloshing liquid and the flexible fluid-filled system was studied by
Balendra et al. [9]. Ma et al. [10] evaluated the seismic response of shell structures containing a
fluid with the aid of the added-mass concept. Liu and Ma [11] developed a coupled fluid–structure
finite element method for the seismic analysis of fluid-filled system of various geometries. Olson
and Bathe [12] used the displacement-based fluid finite elements for calculating the fluid–structure
frequencies. A new Lagrangian fluid method was developed by Wilson and Khalvati [13] which
selectively eliminates the zero-energy modes and produces a fluid element with optimum
behaviour. The method involves the introduction of the constraint of zero fluid rotation at the
integration points. Gupta and Hutchinson [14] carried out studies on ground-supported
cylindrical storage tanks vibrating in an axisymmetric manner. Lui [15] studied the dynamic
coupling of a liquid–tank system under transient excitations. The closed-form solutions for the
element stiffness and mass matrices for the axisymmetric thin shell was obtained by To and Wang
[16]. Kock and Olson [17] developed a finite element method for analyzing non-linear and linear
fluid–structure interaction problems by working directly from a variational indicator
based on Hamilton’s principle. The free vibration characteristics of anisotropic thin cylinder,
partially or completely filled with liquid was studied by Lakis and Sinno [18] using a new
method which combines classical thin shell theory with finite element analysis. A finite element
method with a reduction technique had been used by Qinque and Lidu [19] for solving the
eigenproblem associated with the liquid–container coupling. The coupled frequencies of a
liquid in a cylindrical container with an elastic liquid surface cover had been determined
analytically by Bauer [20]. The natural frequencies of annular plates on an aperture of an infinite
rigid wall and in contact with a fluid on one side are theoretically obtained by Amabili et al. [21]
using the added-mass approach. The authors applied Hankel transform to solve the fluid–plate
coupled system and expressed the boundary conditions by integral equations. Babu and
Bhattacharyya [22] developed the finite element model for the fluid and structure domains
and solved the coupled fluid–tank problem using Newmark predictor–multi-corrector
algorithm. Goncalves and Ramos [23] presented an effective modal solution for evaluating the
free characteristics of cylindrical shells, partially or completely filled with liquid. Kim et al. [24]
used Rayleigh–Ritz method to evaluate the dynamic response of rectangular flexible
fluid containers under horizontal and vertical ground excitation. Bermudez et al. [25] carried
out a finite element analysis for the solution of incompressible fluid–structure vibration
problems.
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Amabili et al. [26] studied the dynamic characteristics of partially filled cylindrical tanks with a
flexible bottom and ring stiffeners. Cho and Song [28] presented two separate dynamic models, the
rigid-tank sloshing and the bulging model without liquid free-surface sloshing, for an
eigenanalysis of fluid–structure interaction problems.

Most of the published works are concerned with the slosh frequency and response analysis of
liquid-filled tanks without baffle. Gedikli and Erg .uven [27] employed boundary element method
to study the effects of baffle on the natural frequencies and seismic response of liquid in a circular
cylindrical tank. However, both tank and baffle are considered as rigid. The natural frequencies of
liquid in a rigid tank with flexible baffles had recently been studied by Biswal et al. [29]. The
analysis considered only the asymmetric mode of vibration of liquid and flexible baffle
corresponding to the circumferential wave number as one.

A coupled liquid–structure finite element method is developed in this paper for computing the
sloshing mode frequencies of liquid and coupled vibration mode frequencies of the liquid–
structure system. The present formulation considers all circumferential modes. The flexibility of
both tank and baffle is taken into account. The slosh amplitude of liquid in a partially filled tank
with baffle are computed under translational base acceleration taking the liquid–baffle and the
liquid–tank interaction into account.

2. Governing equations and finite element formulation

A liquid-filled cylindrical tank with a baffle is shown in Fig. 1. The base of the tank is assumed
to be rigid. The liquid in the tank is assumed to be incompressible, inviscid and irrotational. The
governing differential equation for the liquid in terms of pressure variable is

r2P ¼ 0 ð1Þ

in which P ¼ Pðr; y; z; tÞ is the liquid dynamic pressure and

r2 ¼
@2

@r2
þ

1

r

@
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ARTICLE IN PRESS

  Cylindrical  tank 

h 

H TH

 Free surface of liquid 

Baffle 

Z 

r, x 

iR

R 

fB

sB

bB

Y 

θ 

Fig. 1. A cylindrical tank with a baffle.
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Eq. (1) is solved using finite element technique and with the appropriate time-dependent boundary
conditions as specified below:

(a) At liquid–structure interface:

@P=@n ¼ �rf
.dn on Bs; ð2Þ

where rf is the density of the liquid; dn is the displacement of the structure; n is the outwardly
drawn normal to the surface of the structure.

(b) At liquid free surface:
The linearized free-surface condition yields

@2P=@t2 þ g@P=@n ¼ 0 on Bf : ð3Þ

However, if free-surface wave of the liquid is ignored, then P ¼ 0:
(c) At the bottom of the tank:

@P=@n ¼ 0 on Bb: ð4Þ

2.1. Idealization of tank

The cylindrical tank, the geometry of which is that of a shell-of-revolution having a constant
radius R and thickness tt; with the wall connected to rigid base is shown in Fig. 1. The axial,
circumferential and radial displacement components of a point on the tank middle surface are u; v

and w; respectively.
The tank material is assumed to be homogeneous, isotropic and linearly elastic. The force and

moment resultants can be expressed in terms of the midsurface strains, e0zz; e
0
yy; e

y
zy and curvatures

wzz; wyy; wzy as defined below:

fsg ¼ ½D
feg ð5Þ

in which

fsgT ¼ ½Nzz Nyy Nzy Mzz Myy Mzy 
;

fegT ¼ ½ e0zz e0yy e0zy wzz wyy wzy 
:

The kinematic relations are based on the bending of thin shell [30]:

feg ¼ fe0g þ %rfwg: ð6Þ

2.2. Finite element formulation

The cylindrical tank is modelled by two-noded ring elements with four degrees of freedom
(three displacements u; v; w and one rotation) per node. Fig. 2 shows two axisymmetric thin shell
elements with a baffle element with node j as common node.
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The axial, circumferential and radial components of displacement of a point on the middle
surface of the shell may be expressed as

u ¼
X2

i¼1

Siui cos ny; ð7Þ

v ¼
X2

i¼1

Sivi sin ny; ð8Þ

w ¼
X2

i¼1

Niwi þ
X2

i¼1

#Nibi

" #
cos ny; ð9Þ

where

S1 ¼ 1 � p; S2 ¼ p;

N1 ¼ ð1 � 3p2 þ 2p3Þ; N2 ¼ ð3p2 � 2p3Þ;
#N1 ¼ Lðp � 2p2 þ p3Þ; #N2 ¼ Lð�p2 þ p3Þ;

p ¼ z=L;

n is the circumferential wave number.
The element stiffness matrix is written as

½Kt
e ¼ pR

Z L

0

½B
T½D
½B
 dz; ð10Þ

where ½B
 and ½D
 are given in Ref. [22].
The mass matrix is given by

½Mt
e ¼ prtR

Z L

0

½N
T½N
 dz; ð11Þ
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Fig. 2. Two tank elements and a baffle element.
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where

½N
 ¼

S1 0 0 0 S2 0 0 0

0 S1 0 0 0 S2 0 0

0 0 N1
#N1 0 0 N2

#N2

2
64

3
75:

2.3. Idealization of baffle

An annular thin circular plate is used as a baffle. The assumed displacement functions are
expressed in polar co-ordinates (r and y):

%u ¼ ða1 þ a2rÞ cos ny; ð12Þ

%v ¼ ða3 þ a4rÞ sin ny; ð13Þ

%w ¼ ða5 þ a6r þ a7r2 þ a8r3Þ cos ny ð14Þ

and the nodal displacements for each element are

f %dg ¼ f %u1 %v1 %w1
%b1 %u2 %v2 %w2

%b2g; ð15Þ

where %u; %v and %w are axial, circumferential and transverse displacements, respectively, and %b; the
rotation.

The strain–displacement relationships for axisymmetric shell geometry are given in Ref. [30].
These relations are used to derive the matrix ½ %B
 for flat baffle geometry.

The element stiffness matrix is given by

½ %Kb
e ¼
Z 2p

0

Z R2

R1

½ %B
T½ %D
½ %B
r dr dy; ð16Þ

where R1 and R2 are inner and outer radii, respectively, for the annular ring elements and r varies
from R1 to R2: The ½ %D
 matrix is obtained in similar way as that of tank.

The element mass matrix is expressed as

½ %Mb
e ¼ prt

Z R2

R1

½ %N
T½ %N
r dr; ð17Þ

where

½ %N
 ¼

1 r 0 0 0 0 0 0

0 0 1 r 0 0 0 0

0 0 0 0 1 r r2 r3

2
64

3
75:

2.4. Tank–baffle system

The tank co-ordinate system is taken as the global co-ordinates for the structure domain. The
element stiffness and mass matrices of baffle are appropriately transformed according to the
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global co-ordinate system. The element stiffness and mass matrices of tank and baffle are
assembled to obtain the global stiffness and mass matrices of tank–baffle system.

2.5. Idealization of liquid

The finite element formulation is based on Galerkin weighted residual method. A four-noded
isoparametric quadrilateral axisymmetric element is used to discretize the liquid domain. The
liquid dynamic pressure ð %PÞ is approximated as

%Pðr; y; z; tÞ ¼
XN

j¼1

NjPjðtÞ; ð18Þ

where Nj ¼ %Njðr; zÞ cos ny; %Nj are the shape functions in two dimensions and PjðtÞ are the time-
dependent nodal pressures.

The finite element form of the governing equation may be written asZ
V

@Ni

@r

XN

1

@Nj

@r
Pj þ

1

r2

@Ni

@y

XN

1

@Nj

@y
Pj þ

@Ni

@z

XN

1

@Nj

@z
Pj

 !
dV

þ
1

g

Z
Bf

Ni

XN

1

Nj
.Pj ds ¼ �

Z
Bs

rf Ni
.dn ds ð19Þ

or in standard notations

½Mf 
f .Pg þ ½Kf 
fPg ¼ fFpg ð20Þ

in which ½Mf 
; ½Kf 
 and fFpg are liquid mass matrix, liquid stiffness matrix and liquid force
vector, respectively.

Eq. (20) may be rewritten as

½Mf 
f .Pg þ ½Kf 
fPg ¼ �rf ½S
f .dg þ fFelg ð21Þ

where

½S 
 ¼
Z

Bs

½Nf 
T½Ns
 ds;

with ½Nf 
 as the shape function for the liquid element, ½Ns
 as the shape function for the structural
elements and fFelg as the external nodal force.

The free vibration equation may be written as

½Mf 
f .Pg þ ½Kf 
fPg ¼ �rf ½S
f .d g: ð22Þ

The equations of motions of tank–baffle system when subjected to external forces and forces due
to liquid dynamic pressure takes the following form:

½Ms
f .d g þ ½Ks
fdg ¼ fFetg þ fFlg; ð23Þ

where ½Ms
 and ½Ks
 are the mass and stiffness matrices of the tank–baffle system; f .d g and fdg are
the generalized nodal accelerations and displacements, respectively. fFetg is the external nodal
forces. fFlg is the nodal forces exerted on the tank–baffle system due to liquid dynamic pressure
and equal to ½S
TfPg:
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Eq. (23) may be written as

½Ms
f .d g þ ½Ks
fdg ¼ fFetg þ ½S
TfPg: ð24Þ

Eqs. (21) and (24) are coupled, second order, ordinary differential equations which define the
coupled liquid–tank–baffle system completely. These sets of coupled equations are solved using
Newmark’s predictor–multi-corrector algorithm. The liquid–structure interaction is studied by
transferring the tank and baffle normal acceleration to the liquid domain and liquid pressure to
the tank–baffle system at the liquid–structure interface. The displacements of the two fields are
calculated in a iterative manner within each time step till the desired level of convergence is
achieved.

In the absence of external forces, Eq. (24) may be expressed as

½Ms
f .d g þ ½K’s
fdg ¼ ½S
TfPg: ð25Þ

Eqs. (22) and (25) may be written in matrix form as

½Ms
 ½0


rf ½S 
 ½Mf 


" #
.d

.p

( )
þ

½Ks
 �½S 
T

½0
 ½Kf 


" #
d

p

( )
¼

0

0

( )
: ð26Þ

Eq. (26) is rearranged in order to obtain the symmetric matrices for the coupled system, as given
by

½Ks
 ½0


½0
 ½Mf 


" #
.d

.P

( )

þ
½Ks
½Ms
�1½Ks
 �½Ks
½Ms
�1½S 
T

�rf ½S
½Ms
�1½Ks
 ½Kf 
 þ rf ½S
½Ms
�1½S
T

" #
d

P

( )
¼

0

0

( )
: ð27Þ

Denoting ok as the kth natural frequency of the coupled system and fjkg the corresponding mode
shape vector, Eq. (27) becomes

½ #K 
fjkg � o2
k½ #M
fjkg ¼ f0g: ð28Þ

2.5.1. Sinusoidal base excitation
If the tank is excited under sinusoidal horizontal base excitation, .x ¼ �x0o2 sinot; where x0

and o are the amplitude and circular frequency, respectively, it will excite only antisymmetric
modes that correspond to circumferential wave number as one. The acceleration of the tank wall
along its outward normal, .xn equals to .x cos y: The load vector in Eq. (21) can be expressed as
fFelg ¼ �

R
Bs

rf Ni .xn ds:

3. Numerical examples, results and discussion

Example 1. The following three aspects analyzed by previous researchers are considered here to
validate the present element formulation developed for the liquid, annular plate (baffle) and
circular cylindrical tank.
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(i) The slosh frequencies of liquid in a cylindrical rigid tank of radius R and liquid depth H are
computed for different circumferential wave number, n and radial wave number, m: The number
of fluid elements are 200. It is observed from Table 1 that the slosh frequencies of liquid increase
with the increase in either circumferential wave number or radial wave number or both. The
present results are in good agreement with the slosh frequencies obtained from analytical
expression given by Aslam et al. [7] for n ¼ 1 and those of Amabili et al. [26] for n ¼ 4 and
different values of m: The sloshing mode shapes for the liquid pressure at the tank wall and slosh
response at the liquid free surface is shown in Fig. 3.

(ii) An annular plate is used as baffle in the present study. The baffle is fixed at the outer
periphery and free at inner periphery. The number of baffle elements are 20, 18, 16 and 14 for
Ri=R ¼ 0:1; 0:3; 0:5 and 0.7, respectively.

The natural frequencies of a baffle expressed as non-dimensional parameters are evaluated for
different ratios of outer and inner radii. The geometrical and material properties are same as those
of Amabili et al. [21]. The results presented in Table 2 for different circumferential wave number, n

and radial wave number, m agree well with those of Amabili et al. [21].
(iii) A vertical circular cylindrical tank considered here is same as that of To and Wang [16].

The E; n and r are 210 GPa; 0.3 and 7800 kg=m3; respectively. The number of shell elements
are 20. The natural frequencies are computed for different circumferential wave number, n
and longitudinal wave number, l: The results presented in Fig. 4 compare well with To and
Wang [16].

Example 2. A cylindrical steel tank partially filled with water is considered for the coupled
vibration frequency analysis with and without considering the free-surface waves. The geometrical
and material properties are as follows:
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Table 1

Slosh frequencies of liquid, onm(rad/s) in a cylindrical rigid tank for different circumferential wave number, n and radial

wave number, m (R ¼ 25:0 m; H ¼ 21:6 m)

m Present study

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

1 0.81563 1.08973 1.28413 1.44619

(0.81540)a (1.4444)b

2 1. 44925 1.62680 1.78007 1.91746

(1.44624)a (1.9085)b

3 1.84073 1.99181 2.12779 2.25286

(1.83020)a (2.2308)b

4 2.16739 2.30307 2.42823 2.54534

(2.14323)a (2.5029)b

5 2.46020 2.58598 2.70398 2.81578

(2.41362)a (2.7445)b

aAslam et al. [7].
bAmabili et al. [26].
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Tank: radius ðRÞ ¼ 12:2 m; height ðHT Þ ¼ 12:2 m; E ¼ 207 GPa; n ¼ 0:3; r ¼ 7830 kg=m3:
Liquid: depth of water ðHÞ ¼ 6:1 m; mass density of water ðrf Þ ¼ 1000 kg=m3:
Filling ratio: H=HT ¼ 0:5:
Number of fluid and shell elements are 200 and 20, respectively.
The slosh frequencies of liquid in a flexible tank are computed for the different tank wall

thicknesses and are listed in Table 3. The percentage variations of slosh frequencies with respect to
those for a rigid-tank sloshing model are presented in brackets. The higher variation of slosh
frequencies are observed in lower modes. The variations are reported to be higher for lower
thickness of the tank wall, which reflects the effect of flexibility of the tank on the slosh
frequencies of liquid.

ARTICLE IN PRESS

(a) 

(b) 

(c)

Slosh response 
Liquid pressure 

L C L C

L C L C

L C L C

Fig. 3. Sloshing mode shapes corresponding to circumferential wave number, n ¼ 1: (a) Mode 1 ðo11 ¼ 0:81563 rad=sÞ;
(b) Mode 2 ðo12 ¼ 1:44925 rad=sÞ; (c) Mode 3 ðo13 ¼ 1:84073 rad=sÞ:
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The slosh frequencies and coupled vibration frequencies are calculated for the above liquid–
tank system and are presented in Table 4. Here the tank wall thickness is taken as 12:2 mm: The
results presented in Table 4 compare well with those given by Balendra et al. [9]. This comparison
validates the present coupled formulation for the liquid–flexible tank system. The coupled
vibration frequencies without considering sloshing of liquid are also presented in Table 4 and are
found to be lower than the coupled frequencies by taking sloshing into account. This is because of
the assumption of zero dynamic pressure on the undisturbed liquid free surface, which
overestimates the hydrodynamic mass of the system.

Example 3. A partially filled cylindrical flexible tank with a flexible baffle is considered. The
depth, H of the liquid is considered same as the radius, R of the tank. A baffle is placed at a depth
h from the liquid free surface and h0 from the top of the tank. The dimension and material
properties of tank and baffle are presented below.
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Table 2

Natural frequency parameters, %onm ¼ ½o2
nmrtR4=D
1=4 of an annular plate for different circumferential wave number, n

and radial wave number, m

n m Source Ri=R

0.1 0.3 0.5 0.7

1 1 A 4.60376 4.42044 4.69197 6.73293

B 4.60476 4.42044 4.69197 6.73293

1 2 A 7.75000 7.73044 9.86795 15.92875

B 7.74991 7.73042 9.86794 15.92870

1 3 A 10.82091 11.77556 15.97060 26.34045

B 10.82050 11.77540 15.97040 26.33990

1 4 A 13.87893 16.07834 22.17196 36.76523

B 13.87790 16.07760 22.17100 36.76250

2 1 A 5.87668 5.70911 5.66705 7.18228

B 5.87668 5.70911 5.66706 7.18228

2 2 A 9.13667 8.89166 10.36756 16.12189

B 9.13664 8.89161 10.36760 16.12180

2 3 A 12.30226 12.50895 16.23468 26.44154

B 12.30210 12.50870 16.23450 26.44100

2 4 A 15.42929 16.56367 22.34706 36.83367

B 15.42840 16.56290 22.34600 36.83090

3 1 A 7.14070 7.00493 6.76847 7.82877

B 7.14069 7.00493 6.76847 7.82877

3 2 A 10.52531 10.20124 11.09287 16.43301

B 10.52520 10.20120 11.09290 16.43300

3 3 A 13.76565 13.54141 16.65726 26.60860

B 13.76530 13.54110 16.65710 26.60800

3 4 A 16.94544 17.31420 22.63375 36.94732

B 16.94450 17.31320 22.63270 36.94460

A: Present study; B: Amabili et al. [21].
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Tank: R ¼ 508 mm; HT ¼ 520:7 mm; tt ¼ 1:0 mm; H ¼ 508 mm:
Filling ratio: H=HT ¼ 0:975:
Baffle: Ri ¼ 304:8 mm; R ¼ 508 mm; tb ¼ 1:0 mm:
Material properties (tank and baffle): E ¼ 103 GPa; n ¼ 0:3; rs ¼ 4500 kg=m3:
Number of fluid elements are 184, 188, 190 and 192 for Ri=R ¼ 0:2; 0.4, 0.6 and 0.8,

respectively. Number of shell elements are 13. Number of baffle elements are 16, 12, 10 and 8 for
Ri=R ¼ 0:2; 0.4, 0.6 and 0.8, respectively.
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Fig. 4. Natural frequencies of a cylindrical steel tank with various circumferential number, n and longitudinal number,

l (radius=63:5 mm; height=502 mm and thickness=1:63 mm).

Table 3

Slosh frequencies olm(Hz) with respect to tank wall thickness for different radial wave number, m and circumferential

wave number as one

m Rigid-tank sloshing model Flexible-tank sloshing model

Thickness of tank (mm)

0.5 1.0 5.0 10.0 100

1 0.16516 0.16388 0.16452 0.16504 0.16510 0.16516

(0.775%) (0.387%) (0.072%) (0.072%) (0%)

2 0.32989 0.32929 0.32959 0.32983 0.32986 0.32989

(0.181%) (0.090%) (0.018%) (0.009%) (0%)

3 0.42373 0.42326 0.42350 0.42368 0.42368 0.42373

(0.110%) (0.054%) (0.011%) (0.002%) (0%)

4 0.50424 0.50382 0.50403 0.50420 0.50422 0.50424

(0.042%) (0.021%) (0.004%) (0.002%) (0%)

Note: The bracketed values are the variation of frequencies compared to rigid-tank sloshing model.
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The free vibration characteristics of tank–baffle system are studied under both empty and
liquid-filled conditions.

3.1. Empty tank–baffle system

The tank–baffle system is assumed to be clamped at the tank base and free at the top. First, the
natural frequencies of tank without baffle are computed and are presented in Table 5. Then the
natural frequencies of the tank with baffle are computed for different h0=HT ratios and Ri=R ¼ 0:6
and are recorded in Table 5, where the superscripts ‘B’ and ‘T ’ indicate the baffle and tank-wall
dominated mode frequencies, respectively. It is observed from results in Table 5 that the five
lowest frequencies are baffle-dominated mode frequencies and others are tank-dominated mode
frequencies for all h0=HT ratios. The tank-dominated mode frequencies are observed to be higher
than the frequencies of tank without baffle.

The natural frequencies of tank–baffle system are computed for different Ri=R ratios and
h0=HT ¼ 0:12 and are presented in Table 6. The fundamental mode frequencies are baffle-
dominated modes for all Ri=R ratios. The tank-dominated mode frequencies are independent of
Ri=R ratios, whereas the baffle-dominated mode frequencies vary as shown in Table 6.

The longitudinal mode shape of the first four lowest frequencies of the tank without baffle are
illustrated in Fig. 5. The mode shape for first eight lowest frequencies of the tank with baffle are
illustrated in Fig. 6 for the baffle position, h0=HT ¼ 0:12 and Ri=R ¼ 0:6: It is observed from
Fig. 6 that the longitudinal mode shapes of the tank are changed in presence of baffle, and the
radial displacements of the tank are restrained at the baffle location.
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Table 4

Natural frequencies (Hz) of the coupled system ðn ¼ 1Þ

Type of frequencies Mode

number

Balendra et al. [9]

(Sloshing considered)

Present study

Sloshing

considered

Sloshing

neglected

Sloshing frequencies 1 0.16470 0.16511 —

2 0.32893 0.32987 —

3 0.42229 0.42371 —

4 0.50218 0.50422 —

5 0.57745 0.58024 —

6 0.65154 0.65513 —

7 0.72522 0.72966 —

8 0.79563 0.80132 —

9 0.85386 0.86210 —

10 0.88456 0.89636 —

Coupled vibration frequencies 11 9.64375 9.63578 9.63288

12 17.61110 17.63045 17.62894

13 24.00300 24.15363 24.15251

14 29.59760 29.96432 29.96327

15 35.60210 36.31080 36.30977
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3.2. Liquid-filled tank–baffle system

The coupled formulation developed for the flexible-tank–flexible-baffle system is applied to a
liquid-filled rigid-tank with rigid-baffle system. For the case, E is assumed to be 1020 GPa: The
slosh frequency parameters ð %olm ¼ olmðR=gÞ1=2Þ are computed for different Ri=R ratios and for
two different radial modes (m ¼ 1 and 2) and its squared values are presented in Fig. 7 for
comparison. It is observed that the computed results are quite comparable with those of Gedikli
and Erg .uven [27].
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Table 6

Natural frequencies (Hz) of an empty tank–baffle system for different Ri=R ratios and h0=HT ¼ 0:12 ðn ¼ 1Þ

Mode number Ri=R ratios

0.2 0.4 0.6 0.8

1 18:34B 17:49B 25:66B 84:48B

2 50:80B 64:48B 130:64B 501:93B

3 104:54B 161:63B 351:51B 1336:52T

4 185:36B 308:11B 682:99B 1396:55B

5 394:39B 504:14B 1128:38B 1468:61T

6 431:53B 750:13B 1336:52T 1495:52T

7 596:82B 1047:02B 1468:61T 1502:91T

8 790:48B 1336:52T 1495:52T 1521:55T

9 1012:94B 1396:30B 1502:91T 1880:69T

10 1264:83B 1468:61T 1521:55T 1968:80T

11 1336:52T 1495:52T 1550:65T 2110:90T

12 1468:61T 1502:91T 1596:36T 2365:10T

The values with superscripts ‘B’ and ‘T’ indicate baffle and tank-wall dominated mode frequencies.

Table 5

Natural frequencies (Hz) of an empty tank–baffle system for different h0=HT ratios and Ri=R ¼ 0:6 ðn ¼ 1Þ

Mode number Tank Tank–baffle system

h0=HT ratios

0.22 0.32 0.41 0.51

1 851.32 25:66B 25:66B 25:66B 25:66B

2 1426.38 130:64B 130:64B 130:64B 130:64B

3 1475.42 351:51B 351:51B 351:51B 351:51B

4 1498.38 682:99B 682:99B 682:99B 682:99B

5 1513.99 1128:38B 1128:38B 1128:38B 1128:38B

6 1534.54 1357:24T 1341:65T 1276:45T 1194:05T

7 1563.08 1450:20T 1426:70T 1436:66T 1454:40T

8 1604.50 1479:45T 1489:42T 1497:59T 1485:76T

9 1664.49 1507:15T 1514:73T 1501:90T 1517:26T

10 1734.29 1536:92T 1520:11T 1540:31T 1520:55T

The values with superscripts ‘B’ and‘T’ indicate baffle and tank-wall dominated mode frequencies.
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The fundamental slosh frequency of liquid in the flexible tank without baffle is determined as
0:925 Hz and is illustrated in Fig. 8 as a straight line (curve no. 1). The fundamental slosh
frequencies of liquid are computed for different positions of the flexible baffle, i.e., h=H ¼ 0:1–0.8
and Ri=R ¼ 0:6 and are presented in Fig. 8 (curve no. 2). It is observed that the baffle placed near
to the free surface has a greater influence on the slosh frequencies. The effect of baffle is gradually
reduced when it is moved towards the bottom of the tank. The slosh frequencies of liquid are also
computed by varying the dimension of the baffle i.e., Ri=R ¼ 0:2–0.8 and h=H ¼ 0:1: The results
are presented in Fig. 9 (curve no. 2). It is seen that the slosh frequencies of liquid decrease with the
decrease of Ri=R ratios.

The slosh frequencies of liquid are also computed for a rigid-tank–rigid-baffle system. Curve
no. 3 in Figs. 8 and 9 represent the variations of slosh frequencies for rigid-tank–rigid-baffle
system for different h=Hand Ri=R ratios. It is observed from Figs. 8 and 9 that the flexibility of
tank–baffle system has a little effect on the slosh frequencies.
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f = 851.329 Hz f = 1426.380 Hz 

f = 1475.420 Hz f = 1498.381 Hz 

Fig. 5. Longitudinal mode shapes of four lowest natural frequencies of an empty tank corresponding to circumferential

wave number, n ¼ 1:
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The coupled frequencies of tank without baffle are computed considering the effect of sloshing
of liquid and are presented in Table 7. The coupled frequencies of the tank with baffle are
computed for different h=H ratios and Ri=R ¼ 0:6 and are recorded in Table 7, where the
superscripts ‘B’ and ‘M’ indicate the baffle-dominated and mix mode frequencies, respectively.
The first four lowest coupled frequencies and their corresponding mode shapes are shown in
Fig. 10 for the liquid–tank system without baffle. Fig. 11 illustrates the mode shapes of the first
eight lowest coupled frequencies of the liquid–tank–baffle system for the baffle position, h=H ¼
0:1 and Ri=R ¼ 0:6:

It is observed from Table 7 that the fundamental modes are for baffle-dominated modes for all
positions of the baffle in a tank. The baffle-dominated mode frequencies decrease with the increase
in ðh=HÞ ratios. This happens as the dynamic mass of the liquid increases as the baffle is placed
towards the bottom of the tank.

Example 4. The sloshing response of liquid in a cylindrical rigid tank without baffle is studied
under sinusoidal horizontal base acceleration, .x ¼ �x0o2 sinot: The radius ðRÞ of the tank is
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f = 25.660 Hz f = 130.646 Hz f = 351.513 Hz f = 682.997 Hz

f = 1128.381 Hz f = 1336.520 Hz f = 1468.614 Hz f = 1495.520 Hz 

Fig. 6. Mode shapes of eight lowest natural frequencies of an empty tank–baffle system corresponding to

circumferential wave number, n ¼ 1:
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0:508 m and liquid depth ðHÞ in the tank is 0:508 m: The density of the liquid ðrf Þ is 1000:0 kg=m3:
The parameter x0 is taken as 0:001 m and the exciting frequencies o are 5.811, 10.235, 13.169 and
15:814 rad=s which correspond to first four lowest frequencies of liquid. The number of fluid
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Fig. 7. Variation of natural frequencies of liquid with Ri=R (H=R ¼ 1:0 and h=H ¼ 0:1).
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Fig. 8. Slosh frequencies of liquid for different h=H ratios (H=R ¼ 1:0 and Ri=R ¼ 0:2).
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elements are 200. The slosh displacement at the wall are computed over a period of 10 s and
presented in Fig. 12. It is observed that the sloshing amplitude is the largest when the first sloshing
mode is used as the exciting frequencies.

The sloshing response of liquid in a cylindrical rigid tank in presence of rigid baffle is studied
under the same loading condition. The parameters x0 and o are taken to be as 0:001 m and
5:811 rad=s; respectively. The thickness of baffle is 0:001 m and is assumed to be rigid. The effect
of baffle on the slosh response is studied by varying the dimension and position of the baffle. The
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Fig. 9. Slosh frequencies of liquid for different Ri=R ratios (H=R ¼ 1:0 and h=H ¼ 0:1).

Table 7

Coupled frequencies (Hz) of a partially filled tank with and without baffle ðn ¼ 1Þ

Mode number Tank Tank–baffle system

h=H ratios

0.1 0.2 0.3 0.4 0.5

1 143.457 4:611B 4:019B 3:705B 3:486B 3:307B

2 277.582 30:423B 29:004B 28:486B 28:254B 28:128B

3 396.236 102:929B 100:939B 100:552B 100:429B 100:429B

4 493.066 169:245M 174:588M 181:626M 190:005M 198:617M

5 592.011 248:735B 248:344B 248:386B 247:362B 243:679B

6 698.978 298:869M 307:968M 314:548M 300:743M 281:232M

7 813.609 395:426M 410:556M 381:426M 376:649M 399:475M

8 979.022 477:413M 463:017M 457:548M 488:604M 452:915M

9 1344.270 517:256M 503:631M 514:123M 494:449M 517:717M

10 1473.071 579:963M 562:280M 580:393M 565:319M 584:418M

The values with superscripts ‘B’ and ‘M’ indicate baffle-dominated and mixed-mode frequencies.

K.C. Biswal et al. / Journal of Sound and Vibration 274 (2004) 13–3730



slosh displacement at the tank wall are computed for h=H ¼ 0:1 and Ri=R ratios are equal to 0.8,
0.6 and 0.4 and are presented in Fig. 13. The slosh displacement at the tank wall are computed for
Ri=R ¼ 0:6 and h=H ratios are equal to 0.3 and 0.8 and are illustrated in Fig. 13. The maximum
slosh amplitude obtained from Figs. 13 and 14 are tabulated in Table 8, and the percentage of
reduction in slosh amplitude compared to tank without baffle are presented within brackets. It is
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f = 143.457 Hz f = 277.582 Hz 

f = 396.236Hz f = 493.066 Hz 

Fig. 10. Longitudinal mode shapes of four lowest coupled frequencies of partially filled tank corresponding to

circumferential wave number, n ¼ 1:
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f = 4.611 Hz f = 30.423Hz f = 102.929 Hz f = 169.245 Hz 

f = 248.735 Hz f = 298.869 Hz f = 395.426 Hz f = 477.413 Hz 

Fig. 11. Modes for eight lowest coupled frequencies of a partially filled tank–baffle system corresponding to

circumferential wave number, n ¼ 1:

Table 8

Maximum slosh displacements ðmÞ at the tank wall in a partially filled tank with a baffle of varying dimension and

located at different depth ðhÞ from liquid free surface

h=H Ri=R

0.4 0.6 0.8

0.1 0.0016 0.0036 0.0166

(96.12%) (91.28%) (59.80%)

0.3 0.0051 0.0100 0.0344

(87.76%) (75.78%) (16.70%)

0.8 0.0390 0.0406 0.0411

(5.56%) (1.69%) (0.48%)

Note: The maximum slosh displacement ðmÞ at tank wall without baffle is 0.0413.
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observed from Table 8 that the slosh amplitude decreases with the decrease in Ri=R ratios and
increases with the increase in h=H ratios. The maximum reduction (96.12%) of slosh displacement
at the tank wall is observed when the baffle is placed at h=H ¼ 0:1 for Ri=R ¼ 0:4: The baffle
placed very close to the tank bottom does have negligible contribution in damping out the slosh
amplitude of liquid.

Example 5. A flexible cylindrical tank with a flexible baffle is considered here to study the
flexibility of tank–baffle system on the slosh amplitude of liquid. It is subjected to sinusoidal
horizontal base acceleration, .x ¼ �x0o2 sinot: The parameters x0 and o are taken to be as
0:001 m and 5:811 rad=s; respectively. The radius of the tank, R and the liquid depth, H are the
same as that of Example 4 and height of the tank is 0:525 m: The filling ratio, H=HT is 0.968. The
thickness of baffle is taken to be as 0:001 m and the same thickness is used for the tank wall. The E
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Fig. 12. Slosh displacements at tank wall in a cylindrical rigid tank under sinusoidal base excitation ð .x ¼
�0:001o2 sinotÞ using first four lowest slosh frequencies as exciting frequency. (a) o ¼ 5:811 rad=s (1st mode);

(b) o ¼ 10:235 rad=s (2nd mode); (c) o ¼ 13:169 rad=s (3rd mode); (d) o ¼ 15:814 rad=s (4th mode).
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and r of the tank and baffle materials are taken to be as 103 GPa and 4500 kg=m3; respectively.
The number of fluid, baffle and shell elements are 192, 10 and 13, respectively. The slosh
displacement at the wall are computed over a period of 10 s and are presented in Fig. 15. The
slosh displacement of liquid at the tank wall are computed for the rigid-tank–flexible-baffle and
rigid-tank–rigid-baffle systems and are also presented in Fig. 15. It is observed that the flexibility
of a baffle has a significant effect on the slosh response of the liquid, whereas the flexibility of the
tank has little effect.

4. Conclusion

A coupled finite element formulation is developed to compute the natural frequencies of liquid
and liquid-filled tank–baffle system. The slosh frequencies of a non-viscous and incompressible
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Fig. 13. Slosh displacements at tank wall in a cylindrical rigid tank with varying Ri=R ratios of baffle under sinusoidal

base excitation, .x ¼ �x0o2 sinot ðx0 ¼ 0:001 m; o ¼ 5:811 rad=s: (a) Tank with baffle ðRi=R ¼ 0:8; h=H ¼ 0:1Þ;
(b) tank with baffle ðRi=R ¼ 0:6; h=H ¼ 0:1Þ; (c) tank with baffle ðRi=R ¼ 0:4; h=H ¼ 0:1Þ:
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liquid are evaluated for different dimensions and positions of an annular circular baffle attached
to the tank wall. The slosh frequencies of liquid in a tank can be reduced by the use of the baffle.
The baffle has greater influence on the slosh frequencies of liquid when placed near to the liquid
free surface and the influence is gradually reduced when it is moved towards the bottom of the
tank. The effect of the flexibility of the tank–baffle system on the slosh frequencies of liquid is
examined. It is reported that the slosh frequencies of liquid in the flexible-tank–baffle system are
lower than those of the rigid system.

The slosh amplitude of liquid in a rigid tank is computed under a sinusoidal horizontal base
excitation. The rigid baffle is placed at different locations in a liquid-filled cylindrical rigid tank
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Fig. 14. Slosh displacements at tank wall in a cylindrical rigid tank with varying h=H ratios of baffle under sinusoidal

base excitation, .x ¼ �x0o2 sinot ðx0 ¼ 0:001 m; o ¼ 5:811 rad=sÞ: (a) Tank with baffle ðRi=R ¼ 0:6; h=H ¼ 0:3Þ;
(b) tank with baffle ðRi=R ¼ 0:6; h=H ¼ 0:8Þ:

K.C. Biswal et al. / Journal of Sound and Vibration 274 (2004) 13–37 35



and its effect is examined. The slosh amplitude of liquid can be reduced to a maximum limit by
placing the baffle close to free surface. The effects of flexibility of the tank wall and baffle on the
slosh response of liquid are studied. The flexibility of both tank and baffle affects the slosh
response of liquid, but the latter has a higher effect. The slosh amplitude of liquid in a tank with a
flexible baffle is found to be higher than that in the case with a rigid baffle, but is lower than that
without a baffle. Hence, an annular baffle can be successfully used in damping out the slosh
amplitude of liquid in a cylindrical tank.

Appendix A. Nomenclature

R radius of tank
H depth of liquid in the tank
HT height of the tank
E Young’s modulus of tank and baffle material
n the Poisson ratio
r f mass density of liquid
rs mass density of tank and baffle material
tt; tb thickness of tank wall and baffle, respectively
R1 inner radius of annular ring element of baffle
R2 outer radius of annular ring element of baffle
h depth of baffle from liquid free surface
½K f 
 global stiffness matrix of the liquid
½M f 
 global mass matrix of the liquid
½Ks
 global stiffness matrix of the tank–baffle system
½Ms
 global mass matrix of the tank–baffle system
½S 
 coupling matrix
B f liquid free-surface boundary
Bs liquid–structure interface boundary
Bb tank bottom boundary
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